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LETTER TO THE EDITOR 

Structure of simple liquids as a percolation problem on the 
Voronoi network 

N N Medvedev, V P Voloshin and Y I Naberukhin 
Institute of Chemical Kinetics and Combustion, Siberian Branch of the USSR Academy 
of Sciences, Novosibirsk 630090, USSR 

Received 13 July 1987, in final form 18 November 1987 

Abstract. Analysis of the mutual arrangements of Delaunay simplices is formulated as a 
site-correlated percolation problem on the Voronoi network. Typical cluster configurations 
of simplices of tetrahedral and octahedral form (the main structural elements of simple 
liquids) are found and percolation thresholds for them are obtained. 

For liquid and amorphous substances the regularities of atom packing have not, so 
far, been formulated. Since there is no translational symmetry in such systems, when 
studying their structure one confines oneself to the investigation of a local order. Thus 
the pair distribution function, topological and metric characteristics of the Voronoi 
polyhedra are calculated (Finney 1970, Medvedev et a1 1986) and the interatomic holes 
are catalogued (Frost 1982, Langon et a1 1984), i.e. the nearest coordination shell of 
an atom or the configurations of a small number of particles are investigated. Studying 
the laws of spatial patterns of definite structural units (distinguished atomic configur- 
ations) over the whole volume of a specimen seems to be the next step in understanding 
the structure. In this letter we propose a method for solving this problem and report 
our first results on its application to a dense Lennard-Jones liquid. 

Assume the Voronoi tesselation to be carried out by constructing Voronoi polyhedra 
for all atoms of the computer model of a liquid according to known algorithms (see, 
e.g., Tanemura et a1 1983, Medvedev 1986). The collection of its edges forms a space 
filling network (the Voronoi network). This network possesses remarkable geometric 
properties. For every disordered system exactly four edges meet at a vertex (site) of 
the network. Each site of the Voronoi network is equidistant from the centre of four 
atoms, the Voronoi polyhedra of which meet at this site, being the centre of their 
circumsphere. These four atoms represent the vertices of a figure (tetrahedron of a 
general form) which is called the Delaunay simplex (DS). Thus every site of the Voronoi 
network is in correspondence with a definite Delaunay simplex. Each bond of the 
network joining two sites shows two corresponding simplices to be contiguous, i.e. to 
have a face in common. Hence it follows that the Voronoi network yields a simpler 
way to describe the clusters of the chosen simplicial configurations than the direct 
examination of the coordinates of all atoms engaged in these aggregates. 

Analysis of the computer models of the dense random monatomic systems has 
revealed an important law: most Delaunay simplices belong to figures which are close 
in shape to the perfect tetrahedron and a quarter of the perfect octahedron (quartoctahe- 
dron) (Medvedev and Naberukhin 1987a, b, c). These types of polyhedra are therefore 
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the main structural elements in such systems. We aim to study their connectivity, i.e. 
their mutual arrangement throughout the space. One may introduce the quantitative 
characteristics of proximity of the Delaunay simplex to the perfect tetrahedron (call 
this parameter the tetrahedricity T )  and to the perfect quartoctahedron (octahedricity 
0) (see below). This allows one to ascribe a definite number to every site of the 
Voronoi network and then to colour those sites which correspond to a chosen range 
of values of the characteristics T (or 0). As a result, the problem of spatial arrangement 
of the Delaunay simplices of a definite form can be formulated as the problem of 
percolation of the characteristics of this form ( T  or 0) through the coloured sites of 
the four-coordinated Voronoi network. 

Here we illustrate this idea using the model of the Lennard-Jones liquid. The atom 
coordinates were generated by the Monte Carlo method for 108 particles in a cube 
with periodic boundary conditions at the reduced density p* = 0.9 and temperature 
T* = 0.719. The parameters of the LJ potential were in line with those of argon. To 
remove the superfluous chaos we did not analyse these instantaneous structures (I  
structures) but the ‘frozen’ ones (F  structures) which resulted from each I structure 
by the additional Monte Carlo relaxation at T = 0 K (Naberukhin et a1 1987, Medvedev 
and Naberukhin 1987~).  When passing to the F structure, all the particles shift to the 
local potential minima, thus eliminating the chaos of thermic excitations but conserving 
the topological disorder in the liquid. For our F structures there were 655 sites of the 
Voronoi network inside the basic cube. 

The form characteristics of the Delaunay simplices were defined according to 
Medvedev and Naberukhin (1987a, b, c): 

T =  (1i-lj)2/15T2 
i>j 

for tetrahedricity and 

o= ( i l - l j )2 / io i2+ ( i I - i m / J 2 ) * / 5 i 2  
1’1 r # m  

for octahedricity. Here 1, is the edge length of a given DS, Zm is the length of the 
maximum edge and T is the average edge length. T and 0 vanish for the perfect 
tetrahedron and quartoctahedron, respectively (in the latter, one of the edges is ~ ’ 2  
longer than the others). Therefore by a small value of the parameter T (or 0) we may 
choose among all DS the simplices which are close in form to the perfect tetrahedron 
(or quartoctahedron). 

Figure 1 depicts the result of T colouring of the Voronoi network for one of the 
realisations of our model of the liquid. The figure displays only 100 network sites 
conforming to the most tetrahedral Delaunay simplices (for which T < 0.01 1) and the 
bonds in between. About 20% of the selected sites are seen to be isolated. The rest 
build up the clusters in the form of chains or five-membered rings, both with shoots. 
Increasing the amount of coloured sites (we have proposed (Medvedev and Naberukhin 
1987a) to assign those with T < 0.016 to the tetrahedral simplices) results in decreasing 
the number of single sites, lengthening and branching the chains and creating new 
five-membered rings. Analysis of other independent realisations of the liquid shows 
the described picture of clusters on the Voronoi network to be typical. 

Figure 2 demonstrates the atomic configurations corresponding to the simplest 
fragments of the clusters revealed by T colouring of the Voronoi network. Note that 
configurations in the form of an icosahedron are not available among them. On the 
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Figure 1. T colouring of the Voronoi network for a realisation of the Lennard-Jones liquid. 
100 sites are depicted (among the total number of 655 of the network sites) corresponding 
to the most tetrahedral Delaunay simplices (circles). The bonds sticking out of the cube 
are directed to the images of atoms. 

Voronoi network, such an aggregate would correspond to a cluster of five-membered 
rings in the form of a dodecahedron. Nothing similar is detected in any realisation. 

0 colouring of the Voronoi network of the same liquid realisation as in figure 1 is 
shown in figure 3. It also depicts 100 sites which correspond to the most octahedral 
Delaunay simplices (with 0 < 0.01) and the bonds in between. The picture obtained 
differs substantially from that for the T colouring of the same network (figure 1). 
About 35% of sites are isolated. 20% of sites are combined in pairs with very short 
bonds which correspond to semioctahedral atomic configurations (figure 4( b ) ) .  There 
are three tetramers in which four sites are joined by short bonds in four-membered 
rings; they obviously represent the octahedral atomic configurations. However surpris- 
ingly, the 0 colouring gives rise to a large number of long bonds. A long bond shows 
two quartoctahedra to be in contact by those faces which do not contain the longest 
edges of the simplices (see figures 4(c), ( d ) ) .  Such clusters fail to be part of a single 
octahedral atomic configuration. With increasing number of 0-coloured sites, the 
amount of long bonds increases, and they form chains involving the above-mentioned 
octahedral and semioctahedral aggregates. 

The increase in concentration of the T -  or 0-coloured sites on the Voronoi network 
leads to colouring more and more distorted tetrahedral or quartoctahedral simplices. 
However, the typical picture of clusters described above rests unchanged at least up 
to the concentrations corresponding to a percolation threshold. 

Table 1 presents values of the threshold concentrations p c  for our colouring obtained 
by averaging over five independent realisations of the Voronoi network. As a percola- 
tion threshold, such a concentration of coloured sites has been taken at which at least 
one cluster crosses the opposite faces of the basic cube. First, a very low threshold 
for percolation through the T-coloured sites should be noted, which is indicative of 
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Figure 2. Correspondence between the clusters of the T-coloured sites on the Voronoi 
network and atomic configurations. On the left are sites of the Voronoi network and bonds 
joining the neighbouring sites. In the middle are the Delaunay simplices. On the right 
are atomic configurations. ( a )  A single tetrahedron; ( b )  a three-rayed star, a branching 
point of a cluster; ( c )  a five-membered ring, a decahedron; ( d )  a linear chain, the so-called 
Boerdijk spiral. 

a strong correlation in the mutual arrangement of the tetrahedral configurations in the 
dense Lennard-Jones liquid. A non-random character of the T colouring has a 
profound physical origin. As Berne1 (1964) has argued, a polytetrahedral arrangement 
of particles ensures the maximum possible local density of particle packing and hence 
the minimum local energy. Therefore the T colouring leads to a correlated percolation 
problem. 

The percolation threshold for the octahedral simplices is considerably higher than 
for the tetrahedral ones but lower than the threshold for random colouring of the same 
networks. This results from the shape of the quartoctahedral clusters: they form long 
chains rather rarely and in this respect are distributed in space more randomly than 
tetrahedra. 

Note that the threshold p c  for random colouring of the Voronoi network differs 
from p c  for the diamond lattice (our estimate of pc  for the latter (see table 1) is consistent 
with a value pc=0.428*0.004 of Sykes et al (1976)). This difference should be 
accounted for by the different ring statistics in these four-coordinated networks. In 
the diamond lattice, there are only six-membered rings while in the Voronoi networks 
the distribution from three-membered to eight-membered occurs, equivalent with the 
distribution of the edge numbers in the faces of the Voronoi polyhedra; see, e.g., 
Finney (1970) and Medvedev et af (1986). 

In summary, the proposed methods for colouring the Voronoi network sites allows 
one to establish the characteristic spatial correlation of the main structural elements 
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Figure 3. 0 colouring of the Voronoi network for the same realisation as in figure 1. 100 
sites are depicted which correspond to the most octahedral Delaunay simplices. Arrows 
indicate octahedral atomic configurations. 

i bi 

@ 

Figure 4. Correspondence between the clusters of the 0-coloured sites and atomic configur- 
ations. ( a )  A single quartoctahedron; ( b )  a semioctahedron; ( c )  and ( d )  a ‘non-octahedral’ 
pair of quartoctahedra. 
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Table 1. Percolation thresholds for different site colouring of four-coordinated networks 
and critical values of T and 0 characteristics at the percolation threshold. 

Colouring type P C * U  

The Voronoi T 0.286 f 0.020 T,=O.O161 
network 0 0.423 iO.032 0, = 0.0297 

Random 0.476 f 0.019 

The diamond lattice 
Random colouring 0.437 * 0.018 

of simple liquids in terms of percolation theory. The tetrahedral simplicial atomic 
configurations tend to associate in the branched chains with built-in five-membered 
rings. The quartoctahedral arrangements unite sometimes in semioctahedral and 
octahedra, but mainly they line up in chains which are not the parts of octahedral 
configurations. 
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